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The Phillips (1960) convected wave equation is employed in this paper to study 
aerodynamic noise emission processes in subsonic and supersonic shear layers. 
The wave equation in three spatial dimensions is first reduced to an ordinary 
differential equation by Fourier transformation, then solved via the WKB J 
method. Three typical solutions are required for discussions in this paper. The 
current results are different from the classical conclusions. The effects of re- 
fraction, convection, Mach-number dependence and temperature dependence 
of turbulent noise emission are analysed in the light of solutions to the Phillips 
equation. Owing to the inherent restrictions of the WKBJ transformation, the 
results of the present paper should be applied to wave radiation from shear 
layers whose thickness is no less than approximately one quarter of a wavelength. 
Such a condition is satisfied for turbulent round jets with an exit velocity greater 
than 0.6 times the ambient speed of sound. 

1. Introduction 
This analysis is based on the convected wave equation first introduced by 

Phillips in 1960. It is intended here to study the noise emission and propagation 
properties in shear layers with known turbulence structures. An effort has been 
made to keep the analysis in direct parallel with the classical theory of aero- 
dynamic noise. However, no direct comparison with the Lighthill theory is 
made because some basic assumptions are different, and the implication of 
such differences has not been determined. The analytical results indicate several 
new aspects of noise radiation mechanisms which are not available in the classical 
results. Since the analysis and physical interpretation of this study are rather 
involved, the assumptions made a t  various points throughout this paper are 
summarized as follows. 

The convected wave equation itself is derived through the basic principles 
of fluid mechanics, and it is a natural extension of the Lighthill equation of 
aerodynamic noise. The linearized version of the general equation has the form 
of a simple wave equation in Lagrangian co-ordinates. The right-hand side of 
this equation contains four terms: a turbulent quadrupole, shear flow and 
turbulence interaction, entropy fluctuation and viscous effect. If the flow domain 
is free of shocks, the acoustic pressure fluctuation can be assumed to be de- 
coupled from the entropy fluctuations. It is tacitly assumed in the present 
analysis that all terms on the right-hand side of the wave equation are known 
quantities and the contributions of individual terms can be considered as in- 
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dependent of each other. Justification for such an assumption is a difficult 
fundamental question in the theories of aerodynamic noise. 

The configuration of the flow field brings further restrictive assumptions to 
the convected wave equation such that it becomes mathematically manageable. 
The shear-layer profile and the turbulence structure are assumed to be homo- 
geneous in time and in the two Cartesian co-ordinates in the plane of the shear 
layer. The mean flow velocity and temperature profiles are functions of the 
transverse spatial co-ordinate only. Under such conditions, the three-dimensional 
wave equation can be reduced to an ordinary differential equation by performing 
Fourier transformation in the three co-ordinates for which the flow properties 
are homogeneous. The unknown wave function now depends on only one in- 
dependent variable, a spatial co-ordinate, together with two wavenumber com- 
ponents and frequency as parameters. 

The ordinary differential equation thus obtained is a canonical Sturm- 
Liouville equation. In  essence, this equation can be visualized as a simple wave 
equation with a variable wavenumber which takes both real and imaginary 
values, The point at which the wavenumber passes from one domain to another 
is called a transition point. In  the present analysis, this one-dimensional wave 
equation is first transformed to a standard form by using a WKBJ transformation, 
and then solved by using the Green function and integral equation technique. 
Several transformations are employed as required for different numbers of 
transition points at  different positions along the wave propagation path. 

A crucial point to be discussed here is the inherent limitations introduced by 
the WKBJ method. According to Morse & Peshbach (1953), the WKBJ method 
is applicable only when the change in wavenumber in one wavelength is suf- 
ficiently small. In  the present analysis, it means that the shear-layer thickness 
should be at least of the order of one wavelength. However, this comment applies 
mainly to cases where only the first approximation for the solution is taken. 
The accuracy of such a solution is therefore subject to an asymptotic condition 
where the solution is exact only if the wavenumber approaches infinity. In  the 
present analysis, the WKBJ method is used in the transformation of the dif- 
ferential equation, while the equation is solved through the Green function and 
integral equation technique. Hence, for any given wavenumber the accuracy of 
the solution can be improved by taking higher terms of the iterations. For 
practical computations, the convergence rate should be sufficiently rapid as 
long as the shear-layer thickness is greater than one radian of the acoustic wave- 
number, i.e. kL > 1, where Ic is the wavenumber and L is the shear-layer half- 
thickness. In  the case of jet noise, the value of kL is directly proportional to the 
Strouhal number. It can be shown that the above restriction on wavenumber is 
satisfied for all noise radiation at frequencies higher than the peak of the noise 
spectrum if the jet exit velocity is greater than 0.6 times the ambient speed of 
sound. Hence, the above condition does not impose any significant limitation on 
the application of the present analysis in dealing with noise radiation from high- 
speed turbulent shear flows. 

By solving the reduced wave equation through the WKBJ method, a solution 
for the wave function is obtained in mixed variables: one spatial co-ordinate, 
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two wavenumber components and frequency. In  the far field, the pressure func- 
tion approaches asymptotically a function harmonic in the transverse spatial 
co-ordinate. If the deviation from the harmonic function in the near field is 
ignored, the wave function can be transformed by Fourier analysis into a pure 
harmonic representation in wavenumber-frequency co-ordinates. However, 
neither of the above two representations is convenient for practical applications 
because it is much more important to know the noise spectrum and intensity at 
a given point in space. It is therefore necessary to transform the results back 
through an inverse Fourier transformation into physical co-ordinates. This has 
been accomplished in closed form. One assumption has been made here to 
simplify the mathematics: the shear layer is assumed to be symmetric in the 
transverse spatial co-ordinate. The noise radiation above and below the shear 
layer is the same at  all times. 

The key to this part of the analysis is that the process is actually a matching 
of solutions. First, the pressure field is computed through the Phillips wave 
equation. Second, it is assumed that in the far field the solution is matched by 
a pressure field which is governed by a simple wave equation throughout the 
entire space. Hence, the only differences between the two solutions are in the 
near field. As far as wave propagation in the far field is concerned, it really 
does not matter what has happened in the near field. The solution in the far 
field as obtained through the inverse transformation is indeed the correct solu- 
tion to the Phillips equation. A by-product of this analysis is that an equivalent 
source function can be defined. After matching the solution of the Phillips equa- 
tion in the far field with a solution which is governed by the simple wave equa- 
tion, a source function in the framework of the simple wave equation can be 
identified among the formulae. Such an equivalent source function in the near 
field would provide the best indication of what effect the shear flow has conferred 
upon the radiation efficiency of the turbulent sound sources. 

At this point, the main part of the analysis is complete. Since the non- 
homogeneous nature of the wave equation in the transverse direction precludes 
a clear description of the wave propagation process in common terminology 
of ray acoustics, it is necessary to make some further simplifying assumptions 
for the sake of interpretation of results. These assumptions include taking the 
high frequency limit, the definition of the turbulence structure as a Gaussian 
distribution, order-of-magnitude estimates of integrals, and others. These mis- 
cellaneous items will be discussed individually as they are needed later in this 
paper. 

In a review by Laufer, Ffowcs Williams & Childress (1964), it was noted that 
the original Phillips solution contained a factor {Mz - k 2 / Q 2 ) t  Q-4. If the angle 
9 between the x1 axis and the projection of the wavenumber vector on the plane 
of the shear layer reaches a critical value such that I - M, cos 9 = 0, M 2  - k2/Q2 
vanishes. Therefore, the Phillips solution becomes singular. Furthermore, the 
spectrum of the radiated sound diverges as the factor Q approaches zero. It 
was on this basis that Laufer, Ffowcs Williams & Childress had strong reserva- 
tions as to the validity of the Phillips solution. 

Both of these singularities can be resolved as they are mathematical in nature. 
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The occurrence of the former singularity is a result of an assumption made in 
the analysis of the original Phillips solution. In  Phillips (1960), the Mach number 
is assumed to be very large such that the distance between the pair of transition 
points is small compared with the thickness of the shear layer. However, the 
effective convection Mach number Mc cos q5 equals one at the critical angle. The 
separation between the transition points then equals the thickness of the shear 
layers, and the above assumption is violated. This point has been discussed in 
Pao (1972). In  the present analysis, the position of the transition point and the 
proper form of the WKBJ transformation are determined without any mathe- 
matically restrictive assumption. Apart from the restrictions discussed earlier 
in this section, the solutions are uniformly valid for all wavenumbers at all 
Mach numbers. 

The divergence of the spectrum is a mathematical problem associated with 
the spectral analysis of either the convected wave equation or the simple wave 
equation. The factor (Mq)-& in the spectral solution to the wave equation is an 
integrable singularity which appears to have no particular physical significance. 
In  all practical applications, the solution to the wave equation should be written 
in terms of the space and time co-ordinates instead of the spectral co-ordinates. 
The former solution can be recovered from the latter by means of an inverse 
Fourier transformation as given in this paper. One finds that such a solution 
depends explicitly on (Mq) i .  The singular condition no longer exists. 

Among the assumptions in this paper, there are two important differences 
from the Lighthill theory. In  the Lighthill theory, it is assumed that the shear 
flow dimension is much smaller than the wavelength. In  this analysis, the shear 
flow dimension should be at least of the same order as the wavelength. Second, 
the Lighthill theory was originally derived for convected turbulence at  low 
Maoh numbers while the Phillips theory was originally derived for shear flows 
with very high Mach numbers. Since the Lighthill theory has been subsequently 
extended by Ffowcs Williams (1963) to  the high-speed regime, the second dis- 
tinction is actually rather ambiguous. Nevertheless, these differences in the 
basic assumptions make it rather difficult to  compare directly the results of the 
present analysis with the classical results. In  view of such difficulties in com- 
parison, the analysis in the present paper has been kept in direct parallel with 
the spectral analysis of classical aerodynamic noise theory. By comparing the 
analysis step by step, one can indeed gain much insight into the difference between 
these theories. 

2. Formulation 
By using the momentum equation, the continuity equation and the equation of 

state for a perfect gas, a convected wave equation can be derived (Phillips, 1960) : 
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where p is the pressure, X is the entropy, ui denote the velocity components, t 
and xi denote the time and three-dimensional Cartesian co-ordinates, and cp, 
y and p are the specific heat at constant pressure, the specific heat ratio and 
the coefficient of viscosity, respectively. For sound radiation processes in a 
turbulent flow, both heat conduction and viscosity are likely to be unimportant. 
Furthermore, if the flow field is shock free, one can probably consider separately 
the effect of pressure fluctuations and the effect of entropy fluctuations. Under 
these circumstances, the last two terms of the right-hand side of (1) can be 
omitted. 

In  order to construct a solution to the convected wave equation, it is necessary 
to specify the flow field. A parallel shear flow has been chosen such that it has 
a characteristic thickness 2L and such that the mean flow properties and the 
turbulent structure are homogeneous in time and the spatiaI co-ordinates x1 
and x2 in the plane of the shear layer. The mean flow velocity Gl and the local 
speed of sound a are functions of x3 only. Although the foregoing assumption 
should be sufficient, further restrictions can reduce the bulk of the analysis 
without loss of generality. In  Phillips (1960), an antisymmetric flow field is 
assumed. In  the present analysis, the flow is restricted to symmetrical profles. 
The fluid far from the shear layer is assumed to be stationary. Equation (1) can 
be further simplified if small terms are omitted. In  a turbulent flow, the 
fluctuating velocity components are small in comparison with the mean velocity. 
However, the derivatives of the fluctuating velocity components cannot be 
assumed small. In  the present study, terms depending on small quantities to 
second or higher orders are omitted. Equation (1) then becomes 

where ui denotes velocity fluctuations with zero mean and ;iti the mean velocity. 
Equation (2) is different from the original equation given by Phillips in two 
respects. 

(i) There are two source terms on the right-hand side of this equation. The 
first term is the shear noise and the second term is the self-noise. 

(ii) An additional term ( (a/at  + El a/az,) u; a/ax,> log (p/po)  appears on the left- 
hand side. It can be regarded as a dispersion term. Both slat and T i ,  a/ax, of the 
fluctuating velocity components are large quantities. Fortunately, their com- 
bination represents the evolution of the turbulence in the moving frame of 
reference, which is known to be slow. The value of Dui/Dt is of the same order 
of magnitude as the acoustic radiation. Hence, the effect produced by this term 
may be compared to the diffraction of sound by sound, which is a second-order 
effect. After this term has been neglected the resulting equation has the same 
left-hand side as that given by Phillips. 

In  the present study, the right-hand side of (2) is assumed known, the same 
assumption as was made in the Lighthill theory. Such an assumption is made 
here strictly in the belief that the results of the analysis indeed represent the 
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first-order effects of turbulent noise radiation. Philosophically, the turbulent 
source function is a part of the dynamical process in the flow, and thus inseparable 
from the left-hand side of the differential equation. A rational discussion of the 
limitations of this assumption must be dealt with from a point of view quite 
different from the practical intentions of the present analysis, and thus lies 
beyond the scope of this paper. 

The shear-layer half-thickness L and the maximum shear-layer velocity U 
can be chosen as the reference parameters to non-dimensionalize ( 2 ) .  Since the 
mean flow and turbulence are homogeneous in time and in the plane of the 
shear layer, a generalized Fourier transform in these co-ordinates is adopted to 
simplify the non-dimensional convected wave equation. The ordinary differential 
equation thus obtained can be written as 

(3) 
a2 M2 
- @(Y, kl, k2, w )  +M2q2cf,(y, kl, k,, w )  = - - U Y ,  kl, k,, w ) ,  
dY2 A 2 ( Y )  

where y is an abbreviation for y,: M is the reference Mach number; k, denotes the 
wavenumber components and w stands for frequency. The functions A, cf, and 
r are defined by 

A(?/) = C(Y)/CO> 

uY, 7) = ///~y, k,, k,, w )  exp i(k,yl + k,y, + wT) dk, dk, aw7 

where G(y, r )  represents both the self-noise and shear-noise source terms in the 
convected wave equation. Equation (5) will be the working equation for further 
analysis in this paper. Very few assumptions, apart from linearization and the 
choice of the flow model, have been adopted in the derivation of this equation. 
No significant restriction has been placed so far on the range of applicable Mach 
numbers of the flow as chosen for the convected wave equation. 

The function Mq can be analytically identified with the wavenumber k,. If 
the Lighthill wave equation is subjected to Fourier transformations in the yl, y2 
and r co-ordinates, an ordinary differential equation can be obtained: 

} (6) 
d2P(Y, kl, k2, 41dY2  + 7c,2P(Y, kl, k,, w )  = - M 2 F ( y ,  kl, k,, w ) ,  

kg = M2u2 - (k2, + k;) . 
In the far field, the value of Mq approaches a constant. Hence, (3) and (6) are 
identical if the function Mq and the wavenumber component k, are assumed to 
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stand for the same quantity. Owing to the interaction of the shear flow and the 
wave propagation process, the function Mq becomes a variable in the near field. 
However, it  can still be identified with the transverse wavenumber component 
in a limited sense. 

The function N2q2 may vanish at  certain points in the shear layer. Such a zero 
is called a transition point because the value of M2q2 changes sign across this 
point, and the reduced wave equation changes type either from hyperbolio to 
elliptio or vice versa. Hence, it is necessary to employ the WKBJ method to solve 
(3). There are three cases that need to be considered. In  the first case, there is 
no transition point along the path between the sound source and the far field. 
In common practice, it is actually not necessary to use the WKBJ technique to 
solve (3) in this case. Here it is considered as a zeroth-order WKBJ transforma- 
tion and is treated in the same manner as the other two cases. In  the second case, 
there is one transition point located between the sound source and the far field. 
However, there should be no other transition point within approximately two 
radians of wavelength. Here the differential equation will be hyperbolic in the 
far field and elliptic near the source. The source oscillation which contributes 
to nose radiation is hydrodynamic in nature. For this case the WKBJ transforma- 
tion for well-separated transition points will be employed. In  the third case, 
there are two transition points near the sound source. The distance between 
these two transition points is less than two radians of wavelength. This case 
can be analysed by a WKBJ transformation for a transition point where M2q2 
has a zero of second order. 

The occurrence of transition points is mainly a function of the convection 
Mach number and the angle of radiation. The situation can be considered 
from two different points of view. If a small sound source volume is given in 
the shear layer, where the M, can be regarded as constant, the number and 
position of transition points are determined by the angle of radiation. In  order 
to describe completely the wave radiation in all directions, all of the above con- 
ditions for (3) will be encountered. From another point of view, one ean oonsider 
wave radiation in a given direction with souroe contributions from all layers of 
the shear flow. In  this case, the transition point will be fixed at  a point of the 
shear layer where M, is predetermined by the angle of radiation. Although the 
former point of view is the most practical for applications, the latter view is 
represented by the formulation of (3). 

3. Solution to the convected wave equation 
Through the Fourier analysis indicated in the previous section, the pressure 

field and the sound souroe function have been broken up into plane-wave 
elements. Since the Fourier transformation is performed in the stationary frame 
of reference, the frequency w represents the frequency of a plane-wave element 
as measured at a fixed point in the far field. The projection of the wavenumber 
vector on the plane of the shear layer is represented by k, and k,. These com- 
ponents remain constant throughout the entire space including the shear-layer 
flow domc%in if a plane-wave eIement has been chosen in the far field. However, 
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wave propagation is non-uniform in the direction normal to the plane of the 
shear layer and is governed by (3). 

In  the far field, a plane-wave element is determined by its frequency and wave- 
number vector. In  the present case, the frequency and two components of the 
wavenumber vector are known. Since the magnitudes of the wavenumber and 
frequency are related through the speed of sound, k3 is also known. From the 
above indications, it is clear now that the role of (3) is to determine how a chosen 
plane-wave element in the far field is related to  the turbulent sound sources in 
the near field, and how sound is propagated from the source through the shear 
layer into the far-field. The solutions to (3) given below for various cases will 
confirm the above-mentioned role of the reduced wave equation. 

By using a WKBJ transformation, the one-dimensional wave equation can be 
transformed to the following standard form: 

d2r/dE2 = g,(f;) r +h,@ (n = 0,1,2) ,  (7) 

(8) I- with 

where the transformations of the independent and dependent variables are de- 
fined by 

g,(f;) = w-2{vlv - # ( V / W 2 1 7  
h,(f;) = - Jf2r(t, k,, k,, 4/V# A2, 

4%) = V ( Y )  @(Y), 

@.‘(!I) = df;/dY = IIW f;-+,. 

The value of n denotes the order of zero a t  the transition point, and the lower 
integral limit yo indicates the position of the transition point. For n = 0, there 
is actually no transition point throughout the path of integration. Therefore, 
yo can be conveniently chosen as yo = 0. The function gn(f;)  is a residue function 
arising from the WKBJ transformation. In  the far field, gn(f;) approaches zero 
as f-2. In  the neighbourhood of the transition point, the limiting values of qY and 
g, remain finite as f; approaches zero. In  the remainder of this paper, the solutions 
will. be identified by S O ,  S1 and 5 2  for cases with n = 0, 1 and 2, respectively. 

Since the Green function, integral equation technique for solving (3) is essen- 
tially the same as that given in Phillips (1960), details of the derivations will not 
be repeated here. In  Pao (1971), the solution to (3) has been given as 

where H(f;) is an arbitrary solution which satisfies the homogeneous wave equa- 
tion and E(<, s) is the resolvent kernel which is conjugate to the kernel K(f ,  s )  
of the integral equation. As a first approximation, the resolvent kernel 

However, the solution can actually be given in a simpler form: 
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The difference lies in the starting-point of the iteration. In  (lo), the zeroth-order 
solution is assumed to be H ( [ ) ,  while in (1 1) the zeroth-order solution is assumed 
to be zero. In  the limit, both iterations will lead to the same analytic solution. 
For each of the three main solutions, the boundary conditions and the analytical 
nature of the integrals are different. These solutions will be discussed separately. 
For clarity of interpretation of results, only the first approximation to the 
resolvent kernel will be employed in the discussions immediately below. The 
higher iterations will be discussed later in this paper. 

The acoustic mode SO 

In the S O  solution, no transition point is encountered along the wave propaga- 
tion path. Hence, the value of N2q2 is always positive and bounded away from 
zero. The homogeneous solutions to (3) are the simple harmonic functions of t. 
The kernel of the integration can be written as 

(12) 

where s is a dummy variable corresponding to [. It should be noted also that the 
origin of the 6 co-ordinate has been defined to be the same as the origin of the 
y3 co-ordinate. Since the fist approximation to the resolvent kernel is K(6, s), 
the solution can be given as 

Q0(y, k,, k,, w )  = (Jfp(y)}-& (a  eg + b e-% +/:sin (t - s)ho(s, k,, k,, w )  ds) , (1  3) 

where a and b are arbitrary constants to be determined by the boundary 
conditions. 

If the wave is assumed to be propagating away from the shear layer at  y = -t co 
these radiation conditions will serve as the required two boundary conditions. 
In the present discussion, the shear layer is similar to a jet exhaust flow into 
a stationary ambient medium. The convection velocity vanishes on the y3 axis 
at y3 = k co. The main shear flow will be confined to the neighbourhood of the 

For the above-mentioned flow condition, it is easy to verify that the outgoing 
wave at + 00 is represented by exp (it) and the outgoing wave at - 03 by exp ( - it) 
The boundary conditions can be written as 

K([ ,  8) = (2i)-l{eiE-s) - e-i(t-s)} = sin ( E -  s), 

Y17 Yz Plane- 

I e-is h,(s, k,, k,, w )  ds = 0, 
0 

ho(s, k,, k,, w )  ds = 0. 

Hence, the solution to the convected wave equation for the S O  mode is 

x ( eiiSb e-ish(s, k,, k,, w )  ds  + e-itS:e”h(s, Ic,, k,, w )  ds) . (15) 
- w  

From the structure of this solution, some immediate conclusions can be made. 
First of all, a local frequency can be defined through a Lagrangian transforma- 
tion of co-ordinates. The local frequency of pressure fluctuations as measured in 
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a frame of reference which moves with the convection velocity M, can be written 
as 

w0 = w+k1M,/M. (16) 

Once a far-field plane-wave element has been determined, the values of k,, k, 
and w will remain constant. The value of Hq, though variable, is directly 
proportional to the value of w. In  the high frequency limit, there is a straight- 
forward physical interpretation of (15). The value of Mq can be made arbitrarily 
large as the value of w increases. Under such conditions, the value of Mq will 
appear to be constant over many wavelengths in a small interval Ay in the shear 
layer. If it is further assumed that a correlated turbulence volume lies in Ay, 
then the integrals in (15) will have the form of a Fourier transformation. These 
integrals will thus serve to select a harmonic component from the source function 
and pass it to the far field as a radiated plane-wave element. This source element 
will have a local frequency w,, and a wavenumber vector (kl, k,, Nq). However, 
by definition of Mq (equations (3) and (16))) the following relation holds: 

w; = (A/M)2{k?+ k;+ (Mq),). (17) 

Hence the magnitude of the wavenumber vector is related to the local fre- 
quency through the local speed of sound. The source element which is responsible 
for far-field noise radiation is, therefore, an acoustic component of the turbulence 
structure in the convected frame of reference. Therefore, the S O  mode of noise 
emission can also be called the acoustic mode. 

The Doppler effect of frequency shift can be recovered directly from (16). If 
the angle between the far-field wavenumber vector and the y1 axis is defined as 8, 
equation (16) can be written as 

wo = w( 1 - M, cos 8)) with k, = k, cos 8, 0 = - k, /M, (18) 

where k, denotes the magnitude of the wavenumber vector in the far field, and 
the negative sign in the wavenumber-frequenoy ratio indicates a forward- 
propagating wave according to the definition of the Fourier transformations. 
Therefore 

w = wo/(l-Mccos8). (19) 

Since it is known from the above discussion that the local frequency of the source 
function equals wo, the source function and the far-field noise radiation are 
related by the Doppler shift relation. Equation (19) is derived only from the 
far-field conditions and the definition of wo, its validity does not depend on the 
details of the shear flow profile. This relation should apply equally well to solu- 
tions Sl and S2. 

The Sl solution 

In  this case one transition point exists between the far field and the source 
region. The governing differential equation is hyperbolic on the far-field side of 
the transition point and is elliptic on the other side. In  Erd6lyi (1956, p. 98) 
it is shown that the solutions on both sides of the transition point can be made 
analytically continuous through the use of Airy functions. The matching con- 
dition at  the transition point has been included in the definition of the Airy 
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functions. For this reason, it is more convenient to define the transformation in 
a way which is slightly different from (9) : 

According to this definition, f ;  is real and positive for points on either side of 
the transition point. The sign convention for the Airy functions requires, how- 
ever, that the argument of the functions be negative for the hyperbolic branch 
of the solution and positive for the elliptic branch. In  the present analysis, the f; 
co-ordinate is pointing at the opposite direction from the y co-ordinate for wave 
radiation to plus infinity. 

The kernel for the integral equation can be given as 

} (21) 
n{Bi(-l)Ai(-s)-Ai(-t)Bi(-s)} for y > yo, 
n(Bi (6) Ai (s) - Ai (6) Bi (s)}  for y 6 yo. K ( L s )  = { 

Hence, the first-order approximate solutions to the convected wave equation a.re 

@,(!I, kl,kB,@) = {JfdY)}-%* aAi(-t>+bBi(-E) ( s: I + n{Bi(-k)Ai(-s)-Ai(-E)Bi(-s)}h,(s,Ic,,k,,o)ds for y > yo (22) 

and 

+ n (Bi ( E )  Ai (s) - Ai ( f ; )  Bi (8)) h,(s, Ic,, k,, w )  ds for y < yw (23) s: 
Two boundary conditions are required for the fl i  solution: the pressure wave 
is outgoing as 6 approaches minus infinity, and the pressure fluctuation vanishes 
as approaches plus infinity. In  order to define the boundary conditions, the 
asymptotic approximations for the Airy functions with large argument are 
required : 

} (24) 
Ai(- t )  N n-*[asin(<+&r), Bi(-f;) N n-*[-icos(<+$n), 

Ai (<) N e-5, Bi ( f ; )  N n-tt-2 e6, 

where < = 353. Arter these values of the Airy functions have been substituted 
into (22) and (23), it can be seen that the asymptotic value of the solution is 
a linear combination of the simple harmonic functions exp { f i s  Mlql dy} in the 
far field, and the exponential functions exp { & i 1 Mlql dy} in the near field. Hence, 
the boundary conditions can be written as 

a +n/rBi ( -8) h,(s) ds - i b  - ni Ai ( -8) h,(s) ds = 0, s,” 
nAi(s)h,(s)ds = 0, 
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where h,(s)is an abbreviation of h,(s, k,, k,, w ) .  The solution to the S1 case for y 2 yo 
in the far field can now be written as 

r 

L 

- 1 coAi (s) h,(s) ds + [' Ai 

Since the present subject is wave radiation into the far field, the solution for the 
elliptic branch is not shown. However, it can be easily recovered from (23) by 
substituting into it the values of the constants a and b. 

In (26), the last term on the right-hand side vanishes as soon as y is beyond the 
shear layer. The remainder represents the source contribution of the shear layer 
along the path of wave propagation. The contributions from the elliptic region 
and the hyperbolic region are given in separate terms. In  the elliptic region, the 
integral represents an exponentially weighted sum of the source elements located 
at variable distances from the transition point. The radiation etliciency of a 
source function decreases rapidly with distance from the transition point. It 
should be noted that the distance is measured in terms of wavelengths. For the 
same physical distance along the y axis, the distance would appear to be much 
greater for high frequency than for low frequency. In  this region, the transverse 
wavenumber of the source element is imaginary, and the ratio of frequency to 
the real component of the wavenumber is less than the local speed of sound. 
Hence, the source element can be characterized as hydrodynemic. 

In the hyperbolic region, the function Ai ( - s) is oscillatory. When the value 
of s is large, it can be shown that the noise radiation solution for the hyperbolic 
region of S1 approaches the form of the S O  solution asymptotically, if the func- 
tion Ai ( - s) is replaced by its asymptotic value as given in (24). The interpretation 
of this part of the solution is, therefore, the same as for the XO mode. From 
discussions of the contributions of the source function in the elliptic zone and 
the hyperbolic zone, an interesting conclusion can be made. For low frequencies, 
source elements in both regions can radiate noise with comparable eiliciency. 
For high frequencies, only sources in the hyperbolic region and those in the 
neighbourhood of the transition point are responsible for effective emission of 
noise into the far field. 

For shear flows with very large convection Mach numbers, more than one 
transition point may appear within the half-thickness of the shear layer. The 
elliptic zone of the differential equation is now bounded. In  the presence of 
a second transition point, the second boundary condition, which states that 
the pressure fluctuation vanishes a t  infinity in the elliptic zone, cannot be 
established. However, the second transition point can be ignored if the frequency 
of sound under consideration is sufficiently high because the separation between 
these transition points will appear to be very large, and their influence on each 
other will be very small. If these transition points are separated by more than 
two radians of wavelength, the error in the solution due to  accepting the second 
boundary condition in its present form is less than one per cent. 
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The S 2  solution 

If the distance between two consecutive transition points is less than two radians, 
their presence must be considered together. In  the limiting case, the transition 
points are considered to be a single point with a second-order zero for the function 
M2q2. The WKBJ transformation and the resulting differential equation for 
the present case is given by (7) with n = 2. The homogeneous solutions of the 
wave equation are related to Bessel functions of order one quarter, as given in 
Phillips (1960). It is more convenient to represent the homogeneous solutions by 
a pair of functions Pa and Qa: 

It should be noted that the reduced wave equation for S 2  is hyperbolic on 
either side of the second-order transition point. In  the present study, the origin 
of the WKBJ transformation is defined along the y axis as follows: it is the upper 
transition point for the upper branch and the lower transition point for the lower 
branch. In  Phillips (1960), the definition of the origin is somewhat different. 
Neither definition is exact. In  the present case, the derivative of the transforma- 
tion needs to be defined in the neighbourhood of the transition point such that it 
remains finite : 

On the other hand, the Phillips definition results in an inaccuracy of the trans- 
verse wavenumber component in the far field. Since the final solution is given 
in integral form, an isolated singular point in the definition of 9’ can be removed 
with affecting the value of the solution. The present definition of the WKBJ 
variable appears t o  be acceptable. For both the upper and the lower branches, 
the solution can be written as 

There is a total of four arbitrary constants: a, and b, for the upper branch, 
and a, and b, for the lower branch. These constants will be determined by four 
boundary conditions. Two of the boundary conditions require that the pressure 
wave should be outgoing a t  y = & oc). The other two conditions require that the 
branch solutions should match at 5 = 0. At the second-order transition point 
the pressure should be in equilibrium, and the wave-induced flow field should 
be kinematically compatible. For 52, the convection velocity has a finite jump 
across the transition point. I ts  value is exactly twice the local speed of sound. 
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The treatment of matching conditions for wave propagation across a shear dis- 
continuity has been discussed in detail by Miles (1957) and Ribner (1957). The 
same matching conditions are used in the present analysis. The asymptotic 
values of the functions Pa and &a for large values of 5 can be written as 

Pa (5) 2 (277[)-Bexp(-i(-& "'""'3 as (+oo. 

If these expressions are substituted into (30), the solution will be represented by 
the harmonic functions exp { f i /Nlql dy} in the far field. There are two cases 
which need to be considered. 

First, if the shear flow velocity is extremely large, two transition points may 
appear simultaneously within the half-thickness of the shear layer. Since the 
shear gradient is large, these points may be very close together. The shear flow 
on the two sides of these transition points appears to flow in different directions. 
Its analysis is quite similar to  flows with an antisymmetrical profile. Here, the 
outgoing wave is represented by the &a (5) component for both branches. The 
radiation conditions can now be written as 

(31) 
Qa(5) z ( 2 ~ 3 4  ~ X P  {i(4t2 +&n)} 

1 a, - n/o+mQa (8) h,(s, k,, k,, w )  ds = 0, 

I -03 

u, - n/ &a (s) h,(s, k,, k,, w )  ds = 0. 
0 

According to Ribner (1957), the matching conditions at  the origin of the 5 co- 
ordinate can be given as 

(33) i a, Pa (0) + b, Qa (0) = az Pa (0) + b, &a ( O ) ,  

Qa'(0) = -iPa'(O), 
alPa'(0)+blQa'(O) = -a,Pa'(O)-b,&a'(O), 

where Pa' and &a' indicate first derivatives with respect to k. It follows that 

b, = $(l-i)ul-+(1+i)a2. 

Qa(0) = Pa(O), 

(34) !- b, = *( l - i )a z -+( l+ i )a1 ,  

Hence, the solution to the wave equation can be written as 

for the upper branch, and (35) 

(36) 
for the lower branch. In  the above equations, the radiated wave is represented 
by the Qa(5) term. Its coefficient is composed of three parts: direct outward 



Noise emission from turbulent shear layers 465 

radiation from the sources, inward radiation as reflected by the transition zone, 
and the contribution from sources on the other side of the transition points. 

In  the second case, the velocity of the shear flow is not necessarily high. Since 
the velocity profile is symmetric, the transition points come always in pairs. 
When the frequency of noise radiation is sufficiently low, these transition points 
have to be considered together. The boundary conditions are different: the 
solution approaches &a (5) at y = + co and Pa ( f )  at y = - 00. The WKBJ trans- 
formation near the transition point is also different. Since the velocity gradient 
vanishes at the transition point, the limiting value of at 6 = 0 is given by 

where the second derivative of M,/A indicates the mean ourvature of the shear 
flow profile at 6 = 0. The matching condition near the origin of the 6 co-ordinate 
now reads 

(38) 
a, Pa (0) + b, &a (0) = u2 Pa (0) + b, Qa (0), 

a, Pa' (0) + b, Qa' (0) = a2 Pa' (0) + b, Qa' (0) ,  

which is actually equivalent to stating that both the pressure and the pressure 
gradient be continuous across the transition point. The solution for the present 
case can now be written as 

l- 

Equations (35), (36) and (39) are analytically similar. In  further discussions in 
this paper, these cases will not be cited separately. 

Since the wavenumber is assumed to be small, the value of 6 will be small 
throughout the shear layer. The source function is concentrated near the origin 
as far as the 5 co-ordinate is concerned. Furthermore, the interval between the 
original transition points along the y axis is reduced to zero in the transformation. 
Hence, it is more convenient to calculate the integrals in terms of they co-ordinate. 
In  this case, all the sources are located near the origin of the 6 co-ordinate. The 
expression for the source integral can be significantly simplified. For example, 
the coefficient of the &a (6)  term in (36) can be written as 

s,'Pa (s) h,(s) ds + &( 1 - i) &a (s) h,(s) ds - +( 1 + i) Io+m &a (8) h2(s) d~ 

where Pa (0)  = 0.5770338. The coefficients for the &a (6) term in (37) and (30) 
can also be reduced to the same form, where the limits of integration in the y co- 
ordinate are the boundaries of the shear layer. In  the interval between the 
original transition points, the source function can be identified as a hydrodynamic 
pressure fl.uctuation. The source in this interval is in fact the most important 
part for SZ. In  the above equation, the source integral is simply a sum of all 

30 F L Y  
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the contributions throughout the shear layer without weighting factors. In 
common turbulence structures, the hydrodynamic components contain most of 
the kinetic energy. Hence, the contribution to noise radiation comes mainly 
from source functions in the elliptical region of the S2 wave equation. 

Although the X2 analysis is based on the assumption of low-frequency noise 
radiation, the validity of the results here is limited. In  the WKBJ transformation, 
the residue function g(c) is proportional to k-, within the shear layer. It becomes 
very large if k is much smaller than one. Although the iteration of the integral 
equation will eventually converge, the convergence rate will be very poor. For 
all practical purposes, the present solution should be applied only to cases 
where 7c N 1. 

The inverse Fourier transformation 

In  most practical studies of noise radiation from turbulence, it is necessary to 
know the sound intensity and spectrum at given points in space. The solutions 
obtained so far in the present paper are represented mainly in terms of the wave- 
number-frequency co-ordinates. Hence, it is the purpose of the analysis in this 
section to recover the spatial resolution of the SO,  S1 and S 2  wave functions. 
The spatial representation of the solution is advantageous from yet another 
point of view. It has been noted before in Laufer et al. (1964) that the spectral 
solution diverges at small values of Mq. Evidently, a factor of (Mq)-' z is con- 
tained in all solutions for S O ,  81 and 8 2  as given by (15), (26)) (36), (37) and 
(39). This weak singularity has stirred up serious concern about the validity 
of the solutions. Such a singularity will not appear in the spatial representation 
of the solution to the wave equation. 

The solutions in all three cases approach asymptotically the harmonic func- 
tions exp ( rt_ i 1 Mq(y) d y )  in the far field. It is possible to represent Qn(y, k,, k,, o) 
entirely in terms of the wavenumber-frequency co-ordinates. In  order to keep 
the mathematical expressions from being too complicated, the shear flow profile 
and its associated turbulence structure are assumed to be symmetric with respect 
to the y co-ordinate. As a consequence, the radiated wave field can also be 
regarded as symmetric with respect to the y co-ordinate. With this assumption, 
the Fourier transformation of the wave function with respect to y will be the 
same as a cosine transform, and it can be written as (ErdBlyi 1954) 
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In  (41), the wave function is considered to be harmonic in the far field as 
well as in the near field. That is, the original wave function has been replaced 
by one which is harmonic throughout the entire space, while it matches the 
original solution in the far field. 

By using (41), the spatial and temporal resolution of the solutions can be 
recovered by means of a four-dimensional inverse Fourier transformation : 

where the limits of integration are co. This equation has exactly the same form, 
except for some numerical constants, as the general solution to a simple wave 
equation in three spatial dimensions (Morse & Feshbach 1953). This equation 
can then be written alternatively as 

P(yo, w )  = //[{Mymy Q,(k, w )  e+ik.Yodk, 

G(y, yo, w )  = eikmR/R, 

R = ly-yol z r-y.yo/r (r = y ;  r = (r(). 

In  the above equations, the origin of the y co-ordinates is assumed to be in the 
source region. The dimension of the entire source region is assumed to be small 
compared with the distance from a point yo, in the source region, to  a point y 
in the far field. Equation (45) can now be written as 

@ ( y , t )  = 4nr ...j‘) -o) {Mq,)*(bn(k,w)exp [ -iyo. (k-F)]eiutdyodkdw. (47) 

If this equation is first integrated with respect to yo, and then integrated with 
respect to k, the result can be written as 

If noise spectrum, is preferred, the above equation can be expressed as 

Hence, the spatial resolution of the solutions to the convected wave equation 
has been recovered in terms of closed-form expressions. 

Throughout the above analysis, it is not necessary to define the equivalent 
source function P(yo, w ) .  Therefore, any source function which can produce the 
correct spectral function in the far field will suffice. 

Equation (49) indicates some important properties ofthe wave emission process. 
The intensity of the pressure wave depends on the inverse square of the radial 
distance between the source and the receiving point in the far field. Further- 
more, the pressure fluctuation in the neighbourhood of any point in the far field 

30-2 
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is dominated by a thin pencil of rays emitted from the source in the direction of 
the receiving point. Since this solution is extremely similar in form to the solution 
written in the wavenumber co-ordinates, the inverse transformation has been 
overlooked in previous studies of the convected wave equation. After the inverse 
Fourier transformation, (48) and (49) show that the actual noise spectrum at 
a point differs from the plane wave spectrum, (15), (26) and (30), by a factor of 
klr.  As a consequence, some previous interpretations by Pao (1972) concerning 
the parametrical dependences of the solutions in various modes are in error. 

Noise emission from random sources 

For a random noise source, the source function can only be defined in a statistical 
sense. The results as obtained above have to be further qualified. It can be 
assumed that, for any of the above solutions, a complex conjugate problem of 
the wave propagation process can be posed. After the general solutions for both 
problems have been obtained, they can be multiplied together, and the ensemble 
average of the product can then be taken. The result will represent the statistical 
solution for noise emission from random sources. The SO solution is chosen here 
to demonstrate the analysis. The general solution of the complex conjugate 
problem corresponding to the S O  case can be written as 

@$(y, kl, k2 ,w)  = {Xq(y)}-*(e-g!  5 e+l.h,~(r)dr+ee!5me-~rh~(r)dr].  (50)  

- m  

Hence, the ensemble average of the product of these solutions can be written as 

@,,a$ = nlp(y)-l(ff' e-iseir h,(s)h$(r)drds+ eise-irh,(s)h$(r) drds 
--m 

where the ensemble average, denoted by an overbar, of the product of disjoint 
integrals is assumed to be zero, If the turbulence is assumed to be locally homo- 
geneous in structure, the correlation coefficient of the turbulenoe at two separate 
points depends only on the distance of separation, and the intensity of turbulence 
depends only on the mean value of the co-ordinates of these points. A change of 
variable can be defined: 

where y* and y are points along the y axis which correspond to r and s, re- 
spectively, along the 6 co-ordinate. 

The correlation function of the turbulence can be written in these co-ordinates 

4 = y*- y, p = Q(Y+ y"), (52) 

where II(h,) is the correlation function and N ( p )  indicates the source strength 
distribution. For a small source volume, N ( p )  can be defined as N ( p )  = 1 in 
the source region, and vanishes elsewhere. Unfortunately, (51) cannot be further 
simplified because the co-ordinate transformation between y and 6 is neither 
linear nor homogeneous. The origin of the [ co-ordinate is always fixed at the 
transition point. A convolution integral for (51) is therefore impossible to derive 
except for speoial cases. For practical problems, the integrals will be evaluated 
by numerical calculations. 
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The higher iterations of the resolvent kernel 

The resolvent kernel of a Volterra integral equation can be obtained from K(E, s) 
by iteration: 

where 

where g(r) is the residue function of the WKBJ transformation as defined in (8). 
The subscript for this function is omitted here to avoid confusion. For the 
cases as studied in the present paper, the kernel of the integral equation can 
be written in general as 

(55) 

where Pl(E) and P2(5) are the normalized homogeneous solutions for each case. 
A formalism can now be established for the iterated kernels. If the functions are 
treated as oomponents of a two-dimensional vector, then 

K(E, 8) = F2(E) k’h) - W 5 )  Fz(4, 

m5,4 = m) G$(E, 8) qs,, (56 )  

where 

and 

The summation convention is adopted for these equations. Since g(6) approaches 
zero like 6-2 for -+ m, the iteration is expected to converge rapidly. 

There are two main reasons for writing the resolvent kernel in the present 
form. First, this formalism can be adapted directly for numerical computations. 
Second, an explicit form of the functional dependence of the resolvent kernel 
is necessary in order to show that the iteration will change only the source 
integral and not the form of the radiation boundary conditions in the far field. 

The radiation boundary condition in the far field requires the knowledge of 
both @([) and its first derivative. Using the nth approximation of the resolvent 
kernel, the solution to the wave equation can be written as 

@(a = a4(E> +@At) +wI* 2 G$(E, 4 q4 h(s) &. (57) 

Hence, the derivative of a([) depends on both the derivative of F&) and the 
derivative of the integral, The derivative of the integral contains two terms: 

0 1  

Accordingtothedefinitionof G$(E, s), both G$((,s) and itsfirst derivative vanishes 
at infinity. Hence, the derivative of the integral vanishes at infinity. The 
boundary conditions are defined by the homogeneous solutions and their 
derivatives. The analytical form of the radiation boundary conditions are, there- 
fore, not affected by the order of iteration. 
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4. Discussion 
Refraction effects 

It has been pointed out earlier that the key wave propagation properties in 
a shear flow are fixed by the reduced wave equation. Some properties, such as 
the Doppler shift and the dynamical nature of source elements in a local frame of 
reference, have been discussed in connexion with S O .  Closer examination of rela- 
tions between the source function and far-field plane-wave elements will be 
given in this section. 

In XO, the source element for noise radiation in the high frequency limit can 
be identified as an acoustic component of the local turbulence structure. Hence, 
such an element has also a local direction of propagation. If the local convection 
Mach number is M,, then the local direction of propagation 8, will be related to 
the far-field angle of radiation 8 by 

cOSeO = Acose/(i-M,cose). (59) 

E ,  cos e = E, cos e,, E ,  = M U ,  E, = ivU,/A, (60) 

This relation is obtained through (19) and the following formulae: 

where k,  is the magnitude of the wavenumber vector of the source element. 
It should be noted that (59) is identical to the refraction relation for wave propaga- 
tion in a shear flow. Hence, the refracted path of wave propagation in the shear 
layer can be traced by means of (59). The above discussion applies also to the 
noise radiation mechanisms for source functions located in the hyperbolic 
branch of 81. 

For sound sources in the elliptic branch of S1, the interpretation can be given 
from a different point of view. Analytically, the wavenumber component in 
the transverse direction is imaginary. It is well known that in such cases the 
wave particle velocity is out of phrase with the pressure by Bn. There is no 
energy flux in this direction. However, the wavenumber component k, in the 
direction of the flow is real, and the turbulent energy contained within a given 
source element will be carried forwards through local pressure fluctuations. Por 
a small source volume located beneath the transition point, its pressure fluctua- 
tion is felt, with an exponential decay factor, by the fluid layer in the neighbour- 
hood of the transition point. At the transition point, the pressure fluctuations 
attain the sonic phase velocity. Hence, the pressure fluctuations can now propa- 
gate and turn as an acoustic wave, and leave the shear layer as a radiated plane- 
wave element. For source elements which are located in the elliptic branch 
of 81, equation (59) fails because Jcos 0,I > 1. Here k, is no longer related to w, 
through the local speed of sound as specified by (60). 

For source volumes in S2, the transverse wavenumber component cannot 
be precisely defined. Nevertheless, it can be considered as zero. The turbulence 
source fluctuation has a real propagation velocity in the direction of the flow. 
The general solution in S2 indicates that the source function in such cases is 
coupled directly with radiated plane-wave elements in the far field. 

The correspondence between the source and the radiated noise as described 
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here is not the same as that given in the classical analysis of turbulent noise. 
In  both theories, the frequencies are related through the Doppler shift relation. 
In the classical analysis, the wavenumber vector is the same for a plane-wave 
element in the far field as for the corresponding turbulent source component. 
The analysis which leads to this conclusion is similar to the derivation of (48) 
in connexion with the inverse Fourier transformation. This is perhaps a necessary 
consequence if the wave propagation process is governed by the simple wave 
equation throughout the entire space. Owing to such correspondences between 
wavenumber and frequency, the phase speed for the source component in the 
convected frame of reference can range from zero to values much greater than 
the local speed of sound. This phase speed equals the local speed of sound only if 
8 = in, and it is greater than the ambient speed of sound for all 8 > in. In  the 
present theory, the local phase speed of the source element can only be equal to 
or smaller than the local speed of sound. In  the case of radiation in upstream 
directions, the transverse wavenumber component changes rapidly in the shear 
layer such that locally the ratio of frequency to the magnitude of the wave- 
number vector is always the speed of sound. The physical interpretation of such 
requirements appears to be correct. The turbulent source is embedded entirely 
in the fluid and is not in contact with any solid surface. In addition, only linear 
wave propagation is considered. Hence, the fluctuations in the turbulence can 
only have phase speeds which are equal to or less than the local speed of sound. 

So far, noise radiation has been considered in one direction a t  a time. The 
solutions are given in forms such that all contributions from various source 
volumes are summed along the path of radiation which leads to a given direction 
in the far field. On the other hand, it is more familiar to consider a given compact 
source volume which radiates noise in all directions. It is clear from the above 
discussions that different spectral components of this volume of turbulence will 
be responsible for noise radiation in various frequencies. The noise radiation 
mechanism will also be governed by different modes of solution to the convected 
wave equation. 

For a given convection Mach number for the source volume, the far field can 
be divided into a maximum of four zones. The governing type of solution which 
relates the radiated noise to the source function will be different in each zone. 
The dividing angles f?,, 8, and 8, for these zones are given by 

case, = I/(M,-A), 8, = o if (M, -A)  G 1, 

cos8, = i/(Mc-A), 8, = 7~ if (M,-A)  2 - 1. 

For sound radiation between 8 = 0 and 8, the source element is locally acoustic. 
However, the pressure wave has to pass through a pair of transition points in 
order to reach the far field. For high frequency radiation, the pressure wave will 
be heavily attenuated as it passes through the elliptic segment between the 
transition points. For low frequency radiation, the radiation mechanism will 
be governed by 82. This zone exists only if the convection Mach number is 
sufficiently large such that M, - A is greater than one. In the second zone bounded 
between 8, and 8,, the source element is hydrodynamic. Here the noise radiation 

case, = I / (M,+A) ,  1 (61) 
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process is governed by either X i  or 52, depending on the frequency. It should 
be noted that 8, is always smaller than Qn. For noise emission between 8, and S,, 
the source element is locally acoustic. Since there is no transition point between 
the source and the far field, the sound radiation process is governed by S O .  
A fourth zone exists between 8, and 0 = 7~ in the special case where the flow 
temperature is high while the convection Mach number is small such that M, - A 
is less than - 1. The source element for sound emission in this zone is again 
hydrodynamic, and wave propagation will be governed by Sl or X2. In  most 
cases, only 8, has a non-trivial value. The noise radiation mechanisms will be 
only those described above for the second and third zones. 

The boundary between zones should not be considered as a sharp line of 
separation. For example, the source components in the third zone which are 
responsible for noise radiation near 8, and 8, are indeed acoustic in nature. 
However, the source volume is located very close to a transition point. It is 
more appropriate to describe the radiation process by means of 81.  

Convection eflects 

In discussions below, the value of k, will be taken as zero. This assumption is 
made mainly for convenience. With this restriction, the paths of noise radiation 
will fall on a plane which also contains the normal and the y, axis of the shear 
layer. If the source function is confined to a small volume near the origin, 
a rotation of co-ordinates in the plane of the shear layer will make any radiation 
path coincide with such a vertical plane. The value of Ic, in the new co-ordinates 
will be zero. In  this case, the convection Mach number Mc will be replaced by its 
effective component Mc cos q5, where # is the angle of rotation. 

A simple turbulence structure can now be introduced to serve as the source 
funotion : 

where A is the spatial separation from the source, r is the time delay, L, is the 
spatial scale of the turbulence and Lt is the time scale of the turbulence. This 
turbulence structure satisfies only the equation of continuity of an incompressible 
fluid. The quadrupole self-noise source can now be written in more precise terms:t 

where the turbulence is assumed to be locally incompressible. According to 
Batchelor (1960, p. 179) the fourth-order correlation can be related to the second- 
order correlations via -- - - - - -  

V$ vj  v; v: = vivj. v;v: + vi 21; . vj  vt" 4- v p t "  . vj vg . (65)  
t The shear noise term will not be presented in this paper. Its analytical form is much 

simpler, while its functional dependence is similar to that of the self-noise term. See Pao & 
Lowson (1970). 
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If k, = 0, then only the derivatives with respect to yl and y ,  need to be considered. 
Equation (64 )  represents a contraction of the fourth-order correlation function Y 
which contains sixteen terms. These terms can be evaluated through convolution 
integrals, and their sum turns out to be rather simple: 

It should be noted that k, has been considered as a variable in the convolution 
integrals. It is given the value of zero only after all the integrations have been 
completed. 

Equation (66 )  represents the ensemble average of the square of the self-noise 
term which appears in the convected wave equation. Therefore, it can be used 
directly in the calculation of the mean-square value of the sound pressure. 
A formula for the mean-square value of the pressure field has been derived for 
SO in the previous section. By using the same procedure, it is equally easy to 
derive formulae for the spectral density function @% @z(y, w )  which describes 
the noise spectrum received at a point in the far field. The general formula for 
Qn(y, w )  is given by (as), and the source integrals for SO, X i  and 8 2  are given by 
(42)-(44). A symbolic expression for the mean-square value of the source integral 
can be written as 

where Fl(E) stands for exp { k ia, Ai ( f E ) ,  Pa ( E )  or &a (E), whichever is appro- 
priate; PT(5) is the complex conjugate of Fl(t); and the variables r and s are 
dummies corresponding to the transformed co-ordinate E. There are two cases 
where this integral can be estimated analytically. In  the first case, the source 
function is confined to the neighbourhood of a transition point. In  the second the 
source volume is small and located sufficiently far from a transition point, and it 
is required also that the function q ( y )  be approximately constant throughout the 
source region. The functional dependence of the above integral can reveal im- 
portant information concerning the convection laws for eachof the three solutions. 
Hence, the estimate of this integral will be examined separately for each case. 

If in S O  the source volume is sufficiently small, the value of N q  will appear to  
be constant across the source volume. Consequently, the variables r and s will 
be related linearly to y and y*. The function &(r)  PT(s) can be written as a func- 
tion of A, and p, which are defined in (52). After a simple analysis, it can be shown 
that the integral is equivalent to a local Fourier transformation in the variable A,. 
Furthermore, $' = Mqo in the source region. Hence, 

@,@',*(y,w) = (16n2r2)-l (Mqm)  (2nY @,@',*(k, W )  
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By comparing this equation with the classical results, one finds that the con- 
vection law is tremendously different for the present equation. In  the classical 
result, the factor (k0L1)4 will be replaced by (k,L1)4; the term ( k ,  L,)2 in the ex- 
ponential index will be replaced by ( k ,  L J 2 ,  so that 

(Do@z(y,o) N ~ s ( 1 - ~ c o s ~ ) - 5 ( ~ o ~ 1 ) 4 e x p [ - ~ { ( k , ~ , ) 2 + ( ~ O L t ) 2 ) ] ,  (69)  

where a bandwidth adjustment of (1 -1M,cos8)-1 has been included. If ( 6 8 )  is 
written in the same form, the convection factor of ( ~ - M , c o s ~ ) - ~  will be 
absent from the expression for sound intensity : 

- 

In  (68), there is il factor of q,/qo. It is natural to ask what may happen if q, 
vanishes. If this is the case, the source volume will be in the immediate neigh- 
bourhood of a transition point, the S O  solution will not be valid. Radiation from 
such source volumes should be calculated by using the 81 or 8 2  solution. In  the 
above analysis, the discussion should be valid for all frequencies as long as the 
source volume remains compact and small. That is, it is not necessary to confine 
the analysis to the high frequency limit. However, this analysis is not valid for 
very low frequencies where the WKBJ transformation itself would fail. 

In  the #2 case, the values of r and s are small throughout the shear layer. Hence, 
the function Fl(r) S z ( s )  can be replaced by its value at  r = s = 0. The integral 
in (67) can be written simply as an integration of the source function over the 
variables A, and p. For convenience, the source volume is assumed to be small 
such that the convection Mach number will be approximately constant for the 
entire source volume. While this assumption allows a straightforward interpreta- 
tion of the result, it is not essential to the analysis. The value of @' is proportional 
t o  k$(MQ)+ in the present case:? 

~ 

$' = K { M ~ , Q ) ~ ,  i2 = --( 1 d M ,  ) 
M d y  A ' 

where K is a proportionality constant which equals one in the neighbourhood 
of the transition point. It should be noted that the integral in (67)  in its present 
form can be considered as a Fourier transformation in the A, co-ordinate, while 
the wavenumber component in this direction vanishes. The result of the integra- 
tion can now be written as 

Again, the factor Mq,/$' deserves some attention. It remains finite for all direc- 
tions of wave radiation which belong to S2. The domain of validity for S2 has 

t There are two cases of S2. In the other one, $' = k*{+MCl'}t. 
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been defined in the last subsection. Here 0 will always be smaller than +n, and 
it can approach +n only if the value of M, approaches infinity. 

If the wavenumber factor is rewritten in terms of the local frequency wo, 
equation (72) will read 

The convection law as shown in this equation is different from the classical 
result in two ways. First, there is an additional factor of (cos 0)4-5. Second, the 
Convection factor is stronger by a factor of (1-MCcos6)d. Analytically, the 
latter effect is a result of the interaction between the noise radiation mechanism 
and the shear velocity gradient, since an additional factor of (klLl)* comes from 
the Mqm/$‘ factor in (72). 

The Sl case will be considered in two parts. Again, the source volume is 
assumed to be small: it is located either in the neighbourhood of the transition 
point or far away from it. The convection effects associated with the former 
condition can be analysed in the same way as is the S2 case. Here, the value of 
$‘ in the neighbourhood of the transition point is 

II.’ = k3(2MQ)* (74) 

and the function Fl(r) F?(s) will be evaluated at r = s = 0. Hence, (67) can be 
written as 

In (75) the convection factor is different from the classical result by a factor of 
(Gas 0)4.33 (1 - M ,  cos /3--0.33. The interaction between the sound emission process 
and the velocity gradient is slightly weaker than in the 8 2  case. 

If the source volume is located in the elliptic branch and far away from the 
transition point, the Airy functions can be replaced by their asymptotic forms. 
Consequently, 

F,(r) E ~ s ) / { @ ’ ( r )  V ( s P  = r+s*J’,(r) P?(s)/{Jf2q(r) rr(s))s 

Since the source volume is small and q remains approximately constant over the 
source volume, the argument of the exponential function can be written as 

J’,llqdY = ylMqdy+J;lMqdy = &+~qo(y-y,) ,  

Q = Ju1Mq dy, (77) 

where y1 is a suitable point in the source volume and qo is the value of q at y,. 
It is important to note that the above function depends only on ,u and not A,. 
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The integration of (67) over the variables A, and p has again the meaning of 
a Fourier transformation of the source function in the A, co-ordinate, while the 
wavenumber component vanishes. The result of the integration can now be 
given as 

The convection factor (I  - M, cos 0)-5 is exactly the same as in the classical 
results. However, the above equation contains also a factor of (cos 1 9 ) ~  e-2Q. From 
the definition of transition point, one can verify that the transition point is 
closer to the edge of the shear layer for smaller values of 8. If the source volume 
is located a t  a fixed depth in the shear layer, the distance between the source and 
the transition point will be greater for smaller angles of radiation. For a given 
frequency, the directivity of noise radiation will be strongly modified by the 
factor e-2Q. This is perhaps a contributing factor which leads to the observed 
cardioid pattern of jet noise radiation at high frequencies. 

Q is a linear function of oo: 

where yo is the position of the source function and 0 is the angle of noise radiation 
in the far field. By means of this definition, (78) can be integrated over wo in closed 
analytical form. 

Mach-number and temperature dependence 
Equations (70), (73), (75) and (78)  can be integrated analytically over wo. The 
result will provide a value for the total amount of noise emission in a given 
direction for each of these cases. The exponential function in the turbulent 
source spectrum can be written as a function which depends only on wo: 

] for S1 andS2, (81) 
(1 - M, cos 0)' + a2M,2 C O S ~  0 

X 
(l-n/r,cOse)~ 

Ll/Lt = a(M,/M), 
where 01 is a constant which defines the ratio of the integral spatial scale and 
the integral time scale of the given turbulence structure. The value of 012 can 
be taken as 0.1 in jet turbulence. The value of M/M, is a matter of definition. 
If a single source volume is under consideration, the reference Mach number M 
can be defined as the same as the local convection Mach number M,. Hence, 
M/M, = 1. Equations (70), (73), (75) and (78 )  can now be integrated for noise 
emission in a given direction. The results are, respectively, 

{A2 + a 2 M ~ } d  for S O ,  (82) 
3 x 29 7rtv,4 M8a4qm A 

@o@,*(Y) = r2A2L,qo 
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~ { ( l - M , c o s ~ ) ~ + ~ l ~ M ~ c o s ~ ~ } - ~  for # l ( b ) ,  (85) 

where I?@) denotes the gamma function, and the function F ( b )  and the value of b 
are defined as 

F ( b )  = eba-ua (u - b)4du,  sbm 

It should be noted that the value of b in (87) is defined for self-noise. Its value is 
smaller for shear noise by a factor of 1/2#. In  (82), there is a factor of ( 1  - M,cos 
It is important to note that this term remains finite for all solutions which belong 
to SO. According to (59 )  and (6l) ,  the value of (l-H,cos8)-1 can never be 
greater than (H, + A ) / A .  For small values of Mach number, all of the above cases 
obey an M E  law. For high Mach numbers, the current results are not the same as 
the classical results. First of all, the SO case approaches an M3 law only when H,2 
beoomes significantly greater than A2. However, this does not mean that SO 
radiation is necessarily more efficient in the higher Mach number range than S l  
or 8 2 ,  because this type of noise radiation did not have the advantages of a con- 
vection factor to begin with as did the other two cases. It is quite surprising to 
note that the convection law for the 8 2  and # l ( a )  case turns out to be less 
efficient than the M 3  law in the high Mach number range: there is an M2*6 law 
for SZ and an M2.67 law for S l ( a ) .  For the S l ( b )  case, the Mach-number de- 
pendence is identical to the classical results. 

It is not clear whether the slight decline of the noise radiation efficiency in 
the Sl (a) and S 2  cases is experimentally observable, assuming that the above 
conclusion is correct. The overall noise radiation depends also on the fourth 
power of the turbulence intensity wo. If this non-dimensional value depends on 
even a small positive fractional power of the Mach number, the dependence of v,4 
on Mach number will largely compensate for small deviations from the M 3  law. 

Another unexpected result in this study is the dependence of the radiated 
sound pressure on cj/co. In  ( l ) ,  both the source function y(8vui/8yj) 8vj/ay, and the 
pressure fluctuation log(p/po) are multiplied by a factor A .  Since the source 
function as defined in (8) depends explicitly on A-2, it may appear that the 
intensity of the radiated noise would depend on A-". This is not the case if one 
examines carefully the solutions as given by (15) ,  (28), (36 )  and (39 ) .  While the 
factor AA-2 of the source integrand is evaluated in the shear flow region, the 
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factor A associated with log (p/po) should be evaluated in the far field, where it 
has a value of one. Hence, the sound intensity in the far field depends only on A-2 
instead of AM4. Such a dependence can be written as either T / q  or pj/po, and it is 
much weaker than the corresponding dependence discussed in Ribner (1964). 

Limitations to the present theory 

In  general, the accuracy of the present analysis is limited to the extent where (3) 
is applicable. Although there may be further improvements of this wave equa- 
tion under special flow conditions, it appears that the present solution contains 
a sufficient number of differences from the classical analysis to warrant detailed 
considerations. 

The second limitation of the present analysis is inherent in the WKBJ trans- 
formation. The application of the WKBJ method should be restricted to cases 
where ICL > 1, where k denotes here a dimensional wavenumber. The value of ICL 
is directly related to the Strouhal number Xt in aerodynamic noise: 

Xt = wL/27~U = ICL/ZnM (ICL = 27~XtM). 

For a turbulent round jet, the characteristic dimension is the exit diameter of 
the jet. For most jets, the peak Strouhal number is between 0.25 and 0-30. If 
the jet velocity is greater than 0.6 times the ambient speed of sound, all the 
noise radiation near or above the peak of the spectrum can be studied by the 
present theory. The same statement can be made also for rocket noise radiation. 
The peak Strouhal number for rocket noise ranges from 0.04 down to 0.02. 
However, the corresponding values of M ranges from a minimum of 6 to well 
above 10. 

In  the final discussion, most of the interpretations are made on the assumption 
that the source volume is small. If the source volume is large, much of the simple 
interpretation in terms of ray acoustics will no longer apply. Hence, such dis- 
cussion serves only to indicate the underlying mechanisms of noise emission 
from a physical point of view of fluid mechanics. 

Finally, it should be pointed out that the present formulation is given in 
terms of Cartesian co-ordinates. It is perhaps more appropriate to study prob- 
lems such as jet noise radiation in terms of cylindrical co-ordinates. Mechanisms 
such as low frequency noise radiation and the interaction between jet instability 
and noise radiation can be described more accurately in cylindrical co-ordinates. 
Analytical techniques such as Fourier transformations and WKB J methods re- 
main available for obtaining solutions from the latter case. 

This work was supported by the Unsteady Gasdynamics Branch of National 
Aeronautics and Space Administration - Marshall Space Flight Center, under 
contract no. NAS 8-28588. 
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